Published in

Springer (part of Springer Nature), Journal of Molecular Modeling, 12(20)

DOI: 10.1007/s00894-014-2527-7

Links

Tools

Export citation

Search in Google Scholar

Exploring the interactions between isoprenoid chain and labdenediol diphosphate synthase based on molecular docking and quartz crystal microbalance

Journal article published in 2014 by Wujun Liu, Wei Yang, Yixin Zhang, Zongbao Kent Zhao ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Many natural products and biosynthetic intermediates contain isoprenoid chains. Isoprenoid chains are believed to interact with some proteins in the biological systems, but such interactions remain poorly understood. Here labdenediol diphosphate synthase (LPPS) was used as a model to explore the molecular interactions involving isoprenoid chains. Both homology modeling and docking simulation results indicated that binding form between isoprenoid chain and LPPS is dominated by hydrophobic forces in one binding site. The interactions were also examined via quartz crystal microbalance (QCM) technology using synthetic isoprenoid chain-contained probes. The binding constant (1.51 μM(-1)), binding site number (n = 1) and key amino acid residues (Y196, F262, W266, F301, F308, W398, W439, and Y445) were obtained. Both computational and QCM results suggested that LPPS interacts strongly with farnesyl and geranylgeranyl groups. These interactions are primarily caused by hydrophobic and π-π interaction nature. Together, this study provided insightful information to understand molecular interactions between isoprenoid chains and proteins.