Published in

Trans Tech Publications, Solid State Phenomena, (188), p. 330-338, 2012

DOI: 10.4028/www.scientific.net/ssp.188.330

Links

Tools

Export citation

Search in Google Scholar

Analysis of Machinability of Ti- and Ni-Based Alloys

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Efficient machining of advanced Ti- and Ni-based alloys, which are typically difficult-to-machine, is a challenge that needs to be addressed by the industry. During a typical machining operation of such alloys, high cutting forces imposed by a tool on the work-piece material lead to severe deformations in the process zone, along with high stresses, strains and temperatures in the material, eventually affecting the quality of finished work-piece. Conventional machining (CT) of Ti- and Ni-based alloys is typically characterized by low depths of cuts and relatively low feed rates, thus adversely affecting the material removal rates (MRR) in the machining process. In the present work, a novel machining technique, known as Ultrasonically Assisted Turning (UAT) is shown to dramatically improve machining of these intractable alloys. The developed machining process is capable of high MRR with an improved surface quality of the turned work-piece. Average cutting forces are significantly lower in UAT when compared to those in traditional turning techniques at the same machining parameters, demonstrating the capability of vibration-assisted machining as a viable machining method for the future.