Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Medicinal Chemistry, 23(56), p. 9646-9654, 2013

DOI: 10.1021/jm401185b

Links

Tools

Export citation

Search in Google Scholar

Exploring the Chemical Space of G-Quadruplex Binders: Discovery of a Novel Chemotype Targeting the Human Telomeric Sequence

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent findings have unambiguously demonstrated that DNA G-rich sequences can adopt a G-quadruplex folding in living cells, thus further validating them as crucial targets for anticancer therapy. Herein, to identify new potent G4 binders as antitumor drug candidates, we have targeted a 24-nt G4-forming telomeric sequence employing a receptor-based virtual screening approach. Among the best candidates, in vitro binding experiments allowed identification of three novel G4 ligands. Among them, the best compound features an unprecedented binding selectivity for the human telomeric DNA G-quadruplex with no detectable binding for other G4-forming sequences present at different genomic sites. This behavior correlates with the detected ability to generate DNA damage response in tumor cells at the telomeric level and efficient antiproliferative effect on different tumor cell lines at low micromolar concentrations.