Published in

Wiley, Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 9(307A), p. 479-487, 2007

DOI: 10.1002/jez.402

Links

Tools

Export citation

Search in Google Scholar

Energetic trade-offs between immunity and reproduction in male Japanese Quail (Coturnix coturnix)

Journal article published in 2007 by Raoul K. Boughton, Eli S. Bridge ORCID, Stephan J. Schoech
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigated a postulated trade-off between reproduction and immune function by comparing the energetic costs of an immune response with phytohemagglutinin challenge (or injection) in castrated (low testosterone [T]) and intact (high T) Japanese Quail (Coturnix coturnix). Intact birds had higher resting metabolic rate (RMR) and significantly lower immune response than castrates. RMR of intact birds did not change in response to an immune challenge, suggesting that maintenance of reproductive tissues and associated high T is both immunosuppressive and energetically costly. Despite having a greater immune response than intact quail, castrates had a lower pre-challenge RMR than intact birds and paradoxically tended to decrease RMR during an immune challenge. This paradox may be because of pro-inflammatory cytokines that are released during immune responses. Cytokines promote energy conservation through malaise and soporific behaviors, possibly explaining the co-occurrence of a relatively strong immune response and a decrease in nocturnal RMR in castrates. The lower immune response in intact birds may not elicit as great a response of pro-inflammatory cytokines owing to an already elevated RMR from reproductive state, thus reducing any effect on RMR. The suppressed immune response and elevated RMR in intact birds may be because of T; however, we cannot separate the effects of T per se from the metabolic requirements of reproductive tissues.