Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 8(107), p. 3634-3638, 2010

DOI: 10.1073/pnas.0908071107

Links

Tools

Export citation

Search in Google Scholar

Energetic Basis of Colonial Living in Social Insects

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Understanding the ecology and evolution of insect societies requires greater knowledge of how sociality affects the performance of whole colonies. Metabolic scaling theory, based largely on the body mass scaling of metabolic rate, has successfully predicted many aspects of the physiology and life history of individual (or unitary) organisms. Here we show, using a diverse set of social insect species, that this same theory predicts the size dependence of basic features of the physiology (i.e., metabolic rate, reproductive allocation) and life history (i.e., survival, growth, and reproduction) of whole colonies. The similarity in the size dependence of these features in unitary organisms and whole colonies points to commonalities in functional organization. Thus, it raises an important question of how such evolutionary convergence could arise through the process of natural selection.