Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Medicinal Chemistry, 7(56), p. 2813-2827

DOI: 10.1021/jm3015603

Links

Tools

Export citation

Search in Google Scholar

Endowing Indole-Based Tubulin Inhibitors with an Anchor for Derivatization: Highly Potent 3-Substituted Indolephenstatins and Indoleisocombretastatins

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Colchicine site ligands with indole B rings are potent tubulin polymerization inhibitors. Structural modifications at the indole 3-position of 1-methyl-5-indolyl based isocombretastatins (1,1-diarylethenes) and phenstatins endowed them with anchors for further derivatization and resulted in highly potent compounds. The substituted derivatives displayed potent cytotoxicity against several human cancer cell lines due to tubulin inhibition, as shown by cell cycle analysis, confocal microscopy and tubulin polymerization inhibitory activity studies and promoted cell killing mediated by caspase-3 activation. Binding at the colchicine site was confirmed by means of fluorescence measurements of MTC displacement. Molecular modeling suggests that the tropolone-binding region of the colchicine site of tubulin can adapt to hosting small polar substituents. Isocombretastatins accepted substitutions better than phenstatins, and the highest potencies were achieved for the cyano and hydroxyiminomethyl substituents, with TPI values in the submicromolar range and cytotoxicities in the subnanomolar range. A 3,4,5-trimethoxyphenyl ring usually afforded more potent derivatives than a 2,3,4-trimethoxyphenyl ring.