Published in

American Dairy Science Association, Journal of Dairy Science, 7(97), p. 4193-4207

DOI: 10.3168/jds.2013-7471

Links

Tools

Export citation

Search in Google Scholar

Transcriptional regulators transforming growth factor-β1 and estrogen-related receptor-α identified as putative mediators of calf rumen epithelial tissue development and function during weaning

Journal article published in 2014 by E. E. Connor, R. L. Baldwin, M. P. Walker, S. E. Ellis, C. Li ORCID, S. Kahl, H. Chung, R. W. Li
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Molecular mechanisms regulating rumen epithelial development remain largely unknown. To identify gene networks and regulatory factors controlling rumen development, Holstein bull calves (n = 18) were fed milk replacer only (MRO) until 42 d of age. Three calves each were euthanized at 14 and 42 d of age for tissue collection to represent preweaning, and the remaining calves were provided diets of either milk replacer + orchard grass hay (MH; n = 6) to initiate weaning without development of rumen papillae, or milk replacer + calf starter (MG; n = 6) to initiate weaning and development of rumen papillae. At 56 and 70 d of age, 3 calves from the MH and MG groups were euthanized for collection of rumen epithelium. Total RNA and protein were extracted for microarray analysis and to validate detected changes in selected protein expression, respectively. As expected, calves fed MRO had no rumen papillae and development of papillae was greater in MG versus MH calves. Differentially expressed genes between the MRO diet at d 42 (preweaning) versus the MG or MH diets at d 56 (during weaning) were identified using permutation analysis of differential expression. Expression of 345 and 519 transcripts was uniquely responsive to MG and MH feeding, respectively. Ingenuity pathway analysis indicated that the top-ranked biological function affected by the MG diet was the cell cycle, and TFGB1, FBOX01, and PPARA were identified as key transcriptional regulators of genes responsive to the MG diet and associated with development of rumen papillae. Increased expressions of TGFB1 mRNA and protein in response to the MG diet were confirmed by subsequent analyses. The top-ranking biological function affected by the MH diet was energy production. Receptors for IGF-1 and insulin, ESRRA, and PPARD were identified by ingenuity pathway analysis as transcriptional regulators of genes responsive to the MH diet. Further analysis of TGFB1 and ESRRA mRNA expression in rumen epithelium obtained from a separate ontogenic study of Holstein calves (n = 26) euthanized every 7 d from birth to 42 d of age showed increases in transcript expression with advancing age, supporting their roles in mediating rumen epithelial development and function during weaning. Additional evaluation of gene expression in the rumen epithelium of adult cows ruminally infused with butyrate also suggested that observed changes in ESRRA mRNA expression in developing calf rumen may be mediated by increased butyrate concentration. Our results identify TGFB1 and ESRRA as likely transcriptional regulators of rumen epithelial development and energy metabolism, respectively, and provide targets for modulation of rumen development and function in the growing calf.