Published in

IOS Press, Journal of Alzheimer's Disease, 4(29), p. 853-861

DOI: 10.3233/jad-2012-111760

Links

Tools

Export citation

Search in Google Scholar

Endothelin-1 is Elevated in Alzheimer's Disease and Upregulated by Amyloid-β

Journal article published in 2012 by Jennifer C. Palmer, Rachel Barker ORCID, Patrick G. Kehoe, Seth Love
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Vascular dysfunction and lowered cerebral blood flow are thought to contribute to the development and progression of Alzheimer's disease (AD). Endothelin-1 (ET-1) is a potent vasoconstrictor, the production of which is mainly catalyzed by endothelin-converting enzymes (ECEs). We previously showed that ECE-2 is upregulated by amyloid-β (Aβ), and its expression elevated in AD postmortem brain tissue. We have now investigated whether there is a concomitant increase in ET-1. We studied temporal cortex from 20 cases of sporadic AD and 20 matched controls. The cellular distribution of ET-1 was assessed immunohistochemically in paraffin sections. PreproET-1 (EDN1) mRNA and ET-1 protein were measured in homogenates of superior temporal cortex by real-time PCR and sandwich ELISA respectively. Cultured SH-SY5Y human neuroblastoma cells were incubated with 10 μM oligomeric Aβ42 for 24 h, and ET-1 protein level was measured in cell culture supernatants by sandwich ELISA. Antibody to ET-1 labeled neurons throughout the temporal cortex, and the walls of some cerebral blood vessels. ET-1 mRNA measured in the temporal neocortex was significantly elevated in AD when normalized for expression of GAPDH (p = 0.0256) or the neuronal marker neuron-specific enolase (NSE, p = 0.0001). ET-1 protein was also significantly higher in AD than in control tissue, when adjusted for neuronal content by measurement of NSE (p = 0.0275). ET-1 protein in SH-SY5Y cell supernatant rose 1.7-fold after exposure to 10 μM oligomeric Aβ (p = 0.024). These findings provide evidence of overactivity of the endothelin system in AD, further supporting the suggestion that endothelin receptor antagonists may be of value for the treatment of this disease.