Dissemin is shutting down on January 1st, 2025

Published in

American Heart Association, Stroke, 3(42), p. 776-782, 2011

DOI: 10.1161/strokeaha.110.607200

Links

Tools

Export citation

Search in Google Scholar

Endothelial Nitric Oxide Synthase Mediates Endogenous Protection Against Subarachnoid Hemorrhage-Induced Cerebral Vasospasm

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background and Purpose— Vasospasm-induced delayed cerebral ischemia remains a major source of morbidity in patients with aneurysmal subarachnoid hemorrhage (SAH). We hypothesized that activating innate neurovascular protective mechanisms by preconditioning (PC) may represent a novel therapeutic approach against SAH-induced vasospasm and neurological deficits and, secondarily, that the neurovascular protection it provides is mediated by endothelial nitric oxide synthase (eNOS). Methods— Wild-type mice were subjected to hypoxic PC or normoxia followed 24 hours later by SAH. Neurological function was analyzed daily; vasospasm was assessed on post-surgery Day 2. Nitric oxide availability, eNOS expression, and eNOS activity were also assessed. In a separate experiment, wild-type and eNOS-null mice were subjected to hypoxic PC or normoxia followed by SAH and assessed for vasospasm and neurological deficits. Results— PC nearly completely prevented SAH-induced vasospasm and neurological deficits. It also prevented SAH-induced reduction in nitric oxide availability and increased eNOS activity in mice with and without SAH. PC-induced protection against vasospasm and neurological deficits was lost in wild-type mice treated with the nitric oxide synthase inhibitor N G -nitro- l -arginine methyl ester and in eNOS-null mice. Conclusions— Endogenous protective mechanisms against vasospasm exist, are powerful, and can be induced by PC. eNOS-derived nitric oxide is a critical mediator of PC-induced neurovascular protection. These data provide strong “proof-of-principle” evidence that PC represents a promising new strategy to reduce vasospasm and delayed cerebral ischemia after SAH.