Published in

Elsevier, Journal of Molecular Biology, 5(272), p. 665-676, 1997

DOI: 10.1006/jmbi.1997.1261

Links

Tools

Export citation

Search in Google Scholar

Transcriptional analysis of the Caulobacter 4.5 S RNA ffs gene and the physiological basis of an ffs mutant with a Ts phenotype

Journal article published in 1997 by Elizabeth Winzeler, Robert Wheeler ORCID, Lucy Shapiro
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A temperature-sensitive (ts) mutation in the ffs gene, encoding 4.5 S RNA, gives rise to cell division and DNA replication defects in Caulobacter crescentus. The ffs gene is transcribed throughout the cell-cycle and is transcribed at similar rates in mutant (ffs36) and wild-type strains, but in the mutant the 4.5 S RNA is unstable leading to lower 4.5 S RNA levels. The ffs36 phenotype results from a single base change in one of the non-conserved stems of the mature RNA, and is completely rescued by a compensating mutation in the opposite strand, providing confirmation of the predicted secondary structure of the 4.5 S RNA. The Caulobacter ffs gene was shown to be functionally comparable to the Escherichia coli ffs gene by complementation. Comparison of the ffs36 strain to a ts secA strain of Caulobacter, also having cell-cycle and DNA replication phenotypes, showed that both exhibit a permanent induction of a heat shock response at the restrictive temperature. To explain the phenotype of both the secA and ffs36 strains, we propose that a cell-cycle checkpoint prevents further progression through the cell-cycle in response to increased intracellular levels of heat shock and misfolded proteins.