Dissemin is shutting down on January 1st, 2025

Published in

The Company of Biologists, Journal of Cell Science, 5(124), p. 820-830, 2011

DOI: 10.1242/jcs.078832

Links

Tools

Export citation

Search in Google Scholar

Endosomal clathrin drives actin accumulation at the immunological synapse

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Antigen-specific cognate interaction of T lymphocytes with antigen-presenting cells (APCs) drives major morphological and functional changes in T cells, including actin rearrangements at the immune synapse (IS) formed at the cell–cell contact area. Here we show, using cell lines as well as primary cells, that clathrin, a protein involved in endocytic processes, drives actin accumulation at the IS. Clathrin is recruited towards the IS with parallel kinetics to that of actin. Knockdown of clathrin prevents accumulation of actin and proteins involved in actin polymerization, such as dynamin-2, the Arp2/3 complex and CD2AP at the IS. The clathrin pool involved in actin accumulation at the IS is linked to multivesicular bodies that polarize to the cell–cell contact zone, but not to plasma membrane or Golgi complex. These data underscore the role of clathrin as a platform for the recruitment of proteins that promote actin polymerization at the interface of T cells and APCs.