Published in

Oxford University Press, The Plant Cell, 6(23), p. 2285-2301, 2011

DOI: 10.1105/tpc.111.085266

Links

Tools

Export citation

Search in Google Scholar

Transcription Factor-Dependent Chromatin Remodeling at Heat Shock and Copper-Responsive Promoters in Chlamydomonas reinhardtii

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract How transcription factors affect chromatin structure to regulate gene expression in response to changes in environmental conditions is poorly understood in the green lineage. To shed light on this issue, we used chromatin immunoprecipitation and formaldehyde-assisted isolation of regulatory elements to investigate the chromatin structure at target genes of HSF1 and CRR1, key transcriptional regulators of the heat shock and copper starvation responses, respectively, in the unicellular green alga Chlamydomonas reinhardtii. Generally, we detected lower nucleosome occupancy, higher levels of histone H3/4 acetylation, and lower levels of histone H3 Lys 4 (H3K4) monomethylation at promoter regions of active genes compared with inactive promoters and transcribed and intergenic regions. Specifically, we find that activated HSF1 and CRR1 transcription factors mediate the acetylation of histones H3/4, nucleosome eviction, remodeling of the H3K4 mono- and dimethylation marks, and transcription initiation/elongation. By this, HSF1 and CRR1 quite individually remodel and activate target promoters that may be inactive and embedded into closed chromatin (HSP22F/CYC6) or weakly active and embedded into partially opened (CPX1) or completely opened chromatin (HSP70A/CRD1). We also observed HSF1-independent histone H3/4 deacetylation at the RBCS2 promoter after heat shock, suggesting interplay of specific and presumably more generally acting factors to adapt gene expression to the new requirements of a changing environment.