Published in

Wiley, Rapid Communications in Mass Spectrometry, 19(24), p. 2812-2816, 2010

DOI: 10.1002/rcm.4705

Links

Tools

Export citation

Search in Google Scholar

Sulfur isotope analysis of cinnabar from Roman wall paintings by elemental analysis/isotope ratio mass spectrometry - tracking the origin of archaeological red pigments and their authenticity

Journal article published in 2010 by Jorge E. Spangenberg ORCID, Jost V. Lavric, Nicolas Meisser, Vincent Serneels
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The most valuable pigment of the Roman wall paintings was the red color obtained from powdered cinnabar (Minium Cinnabaris pigment), the red mercury sulfide (HgS), which was brought from mercury (Hg) deposits in the Roman Empire. To address the question of whether sulfur isotope signatures can serve as a rapid method to establish the provenance of the red pigment in Roman frescoes, we have measured the sulfur isotope composition (δ(34)S value in ‰ VCDT) in samples of wall painting from the Roman city Aventicum (Avenches, Vaud, Switzerland) and compared them with values from cinnabar from European mercury deposits (Almadén in Spain, Idria in Slovenia, Monte Amiata in Italy, Moschellandsberg in Germany, and Genepy in France). Our study shows that the δ(34)S values of cinnabar from the studied Roman wall paintings fall within or near to the composition of Almadén cinnabar; thus, the provenance of the raw material may be deduced. This approach may provide information on provenance and authenticity in archaeological, restoration and forensic studies of Roman and Greek frescoes.