Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, Molecular Autism, 1(4), 2013

DOI: 10.1186/2040-2392-4-34

Links

Tools

Export citation

Search in Google Scholar

Common variation contributes to the genetic architecture of social communication traits

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Social communication difficulties represent an autistic trait that is highly heritable and persistent during the course of development. However, little is known about the underlying genetic architecture of this phenotype. Methods We performed a genome-wide association study on parent-reported social communication problems using items of the children’s communication checklist (age 10 to 11 years) studying single and/or joint marker effects. Analyses were conducted in a large UK population-based birth cohort (Avon Longitudinal Study of Parents and their Children, ALSPAC, N = 5,584) and followed-up within a sample of children with comparable measures from Western Australia (RAINE, N = 1364). Results Two of our seven independent top signals (P- discovery <1.0E-05) were replicated (0.009 < P- replication ≤0.02) within RAINE and suggested evidence for association at 6p22.1 (rs9257616, meta-P = 2.5E-07) and 14q22.1 (rs2352908, meta-P = 1.1E-06). The signal at 6p22.1 was identified within the olfactory receptor gene cluster within the broader major histocompatibility complex (MHC) region. The strongest candidate locus within this genomic area was TRIM27. This gene encodes an ubiquitin E3 ligase, which is an interaction partner of methyl-CpG-binding domain (MBD) proteins, such as MBD3 and MBD4, and rare protein-coding mutations within MBD3 and MBD4 have been linked to autism. The signal at 14q22.1 was found within a gene-poor region. Single-variant findings were complemented by estimations of the narrow-sense heritability in ALSPAC suggesting that approximately a fifth of the phenotypic variance in social communication traits is accounted for by joint additive effects of genotyped single nucleotide polymorphisms throughout the genome (h2(SE) = 0.18(0.066), P = 0.0027). Conclusion Overall, our study provides both joint and single-SNP-based evidence for the contribution of common polymorphisms to variation in social communication phenotypes.