Published in

Springer Nature [academic journals on nature.com], Oncogene, 5(27), p. 694-699, 2007

DOI: 10.1038/sj.onc.1210692

Links

Tools

Export citation

Search in Google Scholar

Proapoptotic compound ARC targets Akt and N-myc in neuroblastoma cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have previously described the identification of a nucleoside analog transcriptional inhibitor ARC (4-amino-6-hydrazino-7-beta-D-ribofuranosyl-7H-pyrrolo[2,3-d]-pyrimidine-5-carboxamide) that was able to induce apoptosis in cancer cell lines of different origin. Here, we report the characterization of ARC on a panel of neuroblastoma cell lines. We found that these cell lines were more than 10-fold sensitive to ARC than to the well-known nucleoside analog DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole), and that ARC-induced apoptosis proceeds through mitochondrial injury. Also, we observed that ARC-mediated cell death was accompanied by caspase-3 cleavage and repression of antiapoptotic proteins such as Mcl-1 and survivin. Conversely, we found that overexpression of Mcl-1-protected neuroblastoma cell line NB-1691 from ARC-induced apoptosis. Furthermore, we found that while ARC inhibited the phosphorylation of Akt Ser-473 in multiple cancer cell lines, forced expression of myristoylated Akt promoted resistance to ARC-induced apoptosis in neuroblastoma cells. In addition, we observed that ARC was able to downregulate the protein levels of N-myc, a commonly amplified oncogene in neuroblastomas, and Akt protected N-myc from ARC-induced downregulation. These data suggest that ARC may antagonize different antiapoptotic pathways and induce apoptosis in neuroblastoma cells via multiple mechanisms. Overall, ARC could represent an attractive candidate for anticancer drug development against neuroblastomas.