Published in

American Chemical Society, The Journal of Physical Chemistry A, 7(119), p. 1201-1207, 2015

DOI: 10.1021/jp5120652

Links

Tools

Export citation

Search in Google Scholar

Aromatic Pathways in Carbathiaporphyrins

Journal article published in 2015 by Rashid R. Valiev ORCID, Heike Fliegl ORCID, Dage Sundholm
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Magnetically induced current densities and current pathways have been calculated for carbaporphyrins and carbathiaporphyrins using the gauge including magnetically induced current (GIMIC) method. The aromatic character and current pathways are obtained from the calculated current density susceptibilities. The current-density calculations show that five of the studied carbaporphyrinoids are aromatic, two are antiaromatic, and one is nonaromatic. The analysis of the current pathways of the investigated molecules reveals some general trends for the current flow in carbaporphyrinoids. Insertion of a CH2 group into the all-carbon ring generally cuts or restricts the current flow, leading to a stronger current of the alternative pathway of the ring. No obvious trends regarding the current strengths and pathways of the thiophene and cyclopentadienyl rings were obtained. The present study shows that it is indeed difficult to predict the electron delocalization pathways of general carbaporphyrinoids. Thus, a careful analysis of the current density is necessary for determining their electron delocalization pathways.