American Institute of Physics, The Journal of Chemical Physics, 22(134), p. 224307
DOI: 10.1063/1.3597604
Full text: Download
Mass spectrometry and photoelectron spectroscopy together with first principles theoretical calculations have been used to study the electronic and geometric properties of the following sodium-tin, cluster anion/neutral cluster combinations, (Na(n)Sn(4))(-)/(Na(n)Sn(4)), n = 0-4 and (NaSn(m))(-)/(NaSn(m)), m = 4-7. These synergistic studies found that specific Zintl anions, which are known to occur in condensed Zintl phases, also exist as stable moieties within free clusters. In particular, the cluster anion, (Na(3)Sn(4))(-) is very stable and is characterized as (Na(+))(3)(Sn(4))(-4); its moiety, (Sn(4))(-4) is a classic example of a Zintl anion. In addition, the cluster anion, (NaSn(5))(-) was the most abundant species to be observed in our mass spectrum, and it is characterized as Na(+)(Sn(5))(2-). Its moiety, (Sn(5))(2-) is also known to be present as a Zintl anion in condensed phases.