Published in

Advanced Materials Letters, 6(3), p. 442-448

DOI: 10.5185/amlett.2012.icnano.144

Links

Tools

Export citation

Search in Google Scholar

Gas effect on the surface photovoltage of porphyrin functionalized ZnO nanorods

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Recent studies suggest that the gas sensitivity of porphyrin-functionalized ZnO nanorods can be activated under visible light illumination. Then the use of properly coloured light tuned to the absorbance spectra of individual porphyrins could enable a control of sensors sensitivity. The effect of light on the sensitivity to gases is critically governed by the transport phenomena of electronic charge across the interfaces of organic and inorganic structures. Therefore, accurate measurements of energy levels and contact potential differences in porphyrins functionalized ZnO nanorods are important to intepret the sensing properties of such hybrid materials. For the scope, Kelvin probe measurements of porphyrin-ZnO structures were performed exposing the material in dark and visible light and to organic vapours. Results provide an experimental basis to understand the mutual effects of gas adsorption and illumination to the device conductivity.