Published in

American Institute of Physics, The Journal of Chemical Physics, 6(129), p. 064112

DOI: 10.1063/1.2938371

Links

Tools

Export citation

Search in Google Scholar

Restoring the size consistency of multireference configuration interactions through class dressings: Applications to ground and excited states

Journal article published in 2008 by Nadia Ben Amor, Daniel Maynau, Jean-Paul Malrieu, Antonio Monari ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The present paper presents a revised version of a size-consistency correction to the multireference configuration interaction techniques previously proposed by Szalay et al. [J. Phys. Chem. 100, 6288 (1996)]. The method assumes a complete active space reference space and separates the nonreference determinants in several classes according to their number of inactive holes and particles. The correction is formulated as a dressing of the diagonal energies of these determinants, which depends on their class, as originally proposed by Ruttink et al. [J. Chem. Phys. 94, 7212 (1991)]. The exclusion principle violating corrections are evaluated through a simple counting of the various excitation processes which remain possible on each class. The efficiency of the method has been tested on a series of multireference problems for which full configuration interaction results are available (OH2 bond breaking, Be insertion in H2, excited states of CH2). The dressing of a given state not only provides excellent results for this state but also provides accurate excited roots. The efficiency of state-specific dressings is dramatic. The adaptation of this proposal to difference-dedicated configuration interactions can be extremely fruitful, as illustrated in the calculation of the 1Ag1-1Bu1(π−>π*) transition energy of the trans-butadiene molecule.