Published in

Society for Neuroscience, Journal of Neuroscience, 35(34), p. 11803-11811, 2014

DOI: 10.1523/jneurosci.3184-13.2014

Links

Tools

Export citation

Search in Google Scholar

Prismatic Adaptation Changes Visuospatial Representation in the Inferior Parietal Lobule

Journal article published in 2014 by Sonia Crottaz-Herbette ORCID, Eleonora Fornari, Stephanie Clarke ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Prismatic adaptation has been shown to induce a realignment of visuoproprioceptive representations and to involve parietocerebellar networks. We have investigated in humans how far other types of functions known to involve the parietal cortex are influenced by a brief exposure to prismatic adaptation. Normal subjects underwent an fMRI evaluation before and after a brief session of prismatic adaptation using rightward deviating prisms for one group or after an equivalent session using plain glasses for the other group. Activation patterns to three tasks were analyzed: (1) visual detection; (2) visuospatial short-term memory; and (3) verbal short-term memory. The prismatic adaptation-related changes were found bilaterally in the inferior parietal lobule when prisms, but not plain glasses, were used. This effect was driven by selective changes during the visual detection task: an increase in neural activity was induced on the left and a decrease on the right parietal side after prismatic adaptation. Comparison of activation patterns after prismatic adaptation on the visual detection task demonstrated a significant increase of the ipsilateral field representation in the left inferior parietal lobule and a significant decrease in the right inferior parietal lobule. In conclusion, a brief exposure to prismatic adaptation modulates differently left and right parietal activation during visual detection but not during short-term memory. Furthermore, the visuospatial representation within the inferior parietal lobule changes, with a decrease of the ipsilateral hemifield representation on the right and increase on the left side, suggesting thus a left hemispheric dominance.