Published in

Elsevier, Nuclear Engineering and Design, 9(240), p. 2271-2280

DOI: 10.1016/j.nucengdes.2009.11.015

Links

Tools

Export citation

Search in Google Scholar

Experiments on slug mixing under natural circulation conditions at the ROCOM test facility using high-resolution measurement techniques and numerical modeling

Journal article published in 2010 by S. Kliem ORCID, T. Höhne, U. Rohde, F.-P. Weiss
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ROCOM is a four-loop test facility used for the investigation of coolant mixing in the primary circuit of pressurized water reactors. Recently, a new sensor was developed for an improved visualisation and quantification of the coolant mixing in the downcomer. This new sensor array spans a dense measuring grid and covers nearly the whole downcomer. In the presented work, special emphasis was given to the comparison of the data of this sensor with the results of calculations using the Computational Fluid Dynamics (CFD) code ANSYS CFX. A coolant mixing experiment during natural circulation conditions has been conducted. The underlying scenario of this experiment is based on a boron dilution scenario following a SBLOCA event. The corresponding CFD code solution has been obtained using the Best Practice Guidelines. All main effects observed in the measurement are described by the calculation. The detailed comparison reveals that the calculation underestimates the coolant mixing inside the reactor pressure vessel.The measurement data, boundary conditions of the experiment and facility geometry can be made available to other CFD code users for benchmarking.