Published in

American Chemical Society, The Journal of Physical Chemistry A, 45(115), p. 13104-13113, 2011

DOI: 10.1021/jp205152n

Links

Tools

Export citation

Search in Google Scholar

Understanding Conjugation and Hyperconjugation from Electronic Delocalization Measures

Journal article published in 2011 by Ferran Feixas, Eduard Matito ORCID, Jordi Poater, Miquel Solà ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The concepts of conjugation and hyperconjugation play an important role to provide an explanation for several fundamental phenomena observed in organic chemistry. Because these effects cannot be directly measured experimentally, their assessment became a primary concern for chemists from the very beginning. In general, the stabilization produced by both phenomena has been studied by means of isodesmic reactions and energy based analysis such as the energy decomposition analysis. In recent years, electronic delocalization measures have been successfully applied to elucidate the nature of chemical bonding and the aromatic character of all kind of molecules. Because conjugation and hyperconjugation stabilizations are strongly linked to the concept of electron delocalization, this paper will give an account of both effects from the point of view of electronic delocalization measures calculated within the framework of the quantum theory of atoms in molecules. In particular, we focus our attention in the controversial case of the stabilization by conjugation in 1,3-butadiyne and 1,3-butadiene. Unexpectedly, theoretical calculations based on the scheme proposed by Kistiakowsky to quantify the extent of stabilization due to conjugation predicted that the conjugation of 1,3-butadiyne was zero. Subsequent energetic analyses contradicted this observation. These studies pointed out the presence of hyperconjugation stabilization in the hydrogenated product of 1,3-butadiyne and 1,3-butadiene that were used as reference systems in the Kistiakowsky's scheme. Consequently, the extra stabilization of 1-butyne due to hyperconjugation hides the stabilization by conjugation of 1,3-butadiyne. Our results based on electron delocalization measures confirm both the presence of conjugation in 1,3-butadiene and 1,3-butadiyne and hyperconjugation stabilization in their respective hydrogenated products, 1-butene and 1-butyne.