Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Photonics, 4(8), p. 292-296, 2014

DOI: 10.1038/nphoton.2014.50

Links

Tools

Export citation

Search in Google Scholar

Experimental Three-Photon Quantum Nonlocality under Strict Locality Conditions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Quantum correlations, often observed as violations of Bell inequalities, are critical to our understanding of the quantum world, with far-reaching technological and fundamental impact. Many tests of Bell inequalities have studied pairs of correlated particles. However, interest in multi-particle quantum correlations is driving the experimental frontier to test larger systems. All violations to date require supplementary assumptions that open results to loopholes, the closing of which is one of the most important challenges in quantum science. Seminal experiments have closed some loopholes, but no experiment has closed locality loopholes with three or more particles. Here, we close both the locality and freedom-of-choice loopholes by distributing three-photon Greenberger–Horne–Zeilinger entangled states to independent observers. We measured a violation of Mermin's inequality18 with parameter 2.77 ± 0.08, violating its classical bound by nine standard deviations. These results are a milestone in multi-party quantum communication and a significant advancement of the foundations of quantum mechanics.