Published in

Elsevier, Computational Biology and Chemistry, (53), p. 308-317, 2014

DOI: 10.1016/j.compbiolchem.2014.11.001

Links

Tools

Export citation

Search in Google Scholar

Docking assay of small molecule antivirals to p7 of HCV

Journal article published in 2014 by Leon Bichmann ORCID, Yi-Ting Wang, Wolfgang B. Fischer
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Protein p7 of HCV is a 63 amino acid channel forming membrane protein essential for the progression of viral infection. With this momentousness, p7 emerges as an important target for antiviral therapy. A series of small molecule drugs, such as amantadine, rimantadine, amiloride, hexamethylene amiloride, NN-DNJ and BIT225 have been found to affect the channel activity. These compounds are docked against monomeric and hexameric structures of p7 taken at various time steps from a molecular dynamics simulation of the protein embedded in a hydrated lipid bilayer. The energetics of binding identifies the guanidine based ligands as the most potent ligands. The adamantanes and NN-DNJ show weaker binding energies. The lowest energy poses are those at the site of the loop region for the monomer and hexamer. For the latter, the poses show a tendency of the ligand to face the lumen of the pore. The mode of binding is that of a balance between hydrophobic interactions and hydrogen bond formation with backbone atoms of the protein.