Published in

Elsevier, Phytochemistry, 11-12(72), p. 1371-1378

DOI: 10.1016/j.phytochem.2011.04.010

Links

Tools

Export citation

Search in Google Scholar

Primula spectabilis Tratt. aerial parts: Morphology, volatile compounds and flavonoids

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The vacuolar and epicuticular flavonoids and the volatiles of the leaves and parts of flower of P. spectabilis Tratt., an endemic species in the Italian Oriental Alps, were investigated. From a MeOH extract of the leaves two flavone glycosides, 8-C-β-glucopyranosylluteolin 7-O-α-arabinofuranoside (1) and 6-C-α-arabinofuranosylapigenin (2) were isolated, in addition to a flavone and three flavonols already known from species of Primula. From an EtOH extract of leaf exudates, 7,3',4'-tri-O-methylquercetin was obtained. The structures were elucidated on the basis of their 1D ¹H- and ¹³C NMR data and 2D NMR techniques, as well as of HPLC-MS. The volatiles emitted by the leaves were mainly constituted by non-terpene derivatives, followed by comparable proportions of hemiterpens, oxygenated monoterpenes and sesquiterpene hydrocarbons. In flowers, monoterpene hydrocarbons were the most represented chemical class followed by non-terpene derivatives. Different proportions of compounds were found when individual parts of flowers were examined separately; calyx produced a greater proportion (approx. 49.5%) of non-terpenes as its volatile metabolites. P. spectabilis has glandular trichomes in the hyaline margins of the epidermal depressions, distributed on the adaxial leaf blade. Glandular hairs were also present on the corolla. Correlations of phytochemical data with the morphological features of leaf, flower and glandular hair are discussed, and a hypothesis is proposed on the ecological roles of the flavonoids and volatile compounds on the general fitness of the species and cross-pollination strategies.