Published in

American Physical Society, Physical Review C, 4(91), 2015

DOI: 10.1103/physrevc.91.047601

Links

Tools

Export citation

Search in Google Scholar

Reexamination of the neutron-to-proton-ratio puzzle in intermediate-energy heavy-ion collisions

Journal article published in 2015 by Hai-Yun Kong, Yin Xia, Jun Xu, Lie-Wen Chen ORCID, Bao-An Li, Yu-Gang Ma
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Incorporating a newly improved isospin- and momentum-dependent interaction in the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model IBUU11, we have investigated relative effects of the density dependence of nuclear symmetry energy $E_{sym}(ρ)$ and the neutron-proton effective mass splitting $m^*_n-m^*_p$ on the neutron/proton ratio of free nucleons and those in light clusters. It is found that the $m^*_n-m^*_p$ has a relatively stronger effect than the $E_{sym}(ρ)$ and the assumption of $m^*_n≤ m^*_p$ leads to a higher neutron/proton ratio. Moreover, this finding is independent of the in-medium nucleon-nucleon cross sections used. However, results of our calculations using the $E_{sym}(ρ)$ and $m^*_n-m^*_p$ both within their current uncertainty ranges are all too low compared to the recent NSCL/MSU double neutron/proton ratio data from central $^{124}$Sn+$^{124}$Sn and $^{112}$Sn+$^{112}$Sn collisions at 50 and 120 MeV/u, thus calling for new mechanisms to explain the puzzlingly high neutron/proton ratio observed in the experiments. ; Comment: 6 pages, 2 figures, discussions added