Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Acta Oecologica, 3(25), p. 169-178

DOI: 10.1016/j.actao.2004.01.002

Links

Tools

Export citation

Search in Google Scholar

Do seed mass and family affect germination and juvenile performance in Knautia arvensis? A study using failure-time methods

Journal article published in 2004 by Vibekke Vange, Ivar Heuch ORCID, Vigdis Vandvik
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Germination and seedling establishment are vulnerable stages in the plant life cycle. We investigated how seed mass and family (progeny origin) affect germination and juvenile performance in the grassland herb Knautia arvensis. Seeds were produced by cross-pollination by hand. The fate of 15 individually weighed seeds from each of 15 plants was followed during a 3-month growth chamber experiment. Progeny origin affected germination, both through seed mass and as an independent factor. Two groups of progenies could be distinguished by having rapid or delayed germination. The two groups had similar mean seed masses, but a positive relationship between seed mass and germination rate could be established only among the rapidly germinating progenies. These biologically relevant patterns were revealed because timing of germination was taken into account in the analyses, not only frequencies. Time-to-event data were analysed with failure-time methods, which gave more stable estimates for the relation between germination and seed mass than the commonly applied logistic regression. Progeny origin and seed mass exerted less impact on later characters like juvenile survival, juvenile biomass, and rosette number. These characters were not affected by the timing of germination under the competition-free study conditions. The decrease in the effect of progeny origin from the seed and germination to the juvenile stages suggests that parental effects other than those contributing to the offspring genotype strongly influenced the offspring phenotype at the earliest life stages. Further, the division of progeny germination patterns into two fairly distinct groups indicates that there was a genetic basis for the variation in stratification requirements among parental plants. Field studies are needed to elucidate effects of different timing of germination in the seasonal grasslands that K. arvensis inhabits.