Published in

Elsevier, Journal of Hazardous Materials, 1-3(184), p. 417-424, 2010

DOI: 10.1016/j.jhazmat.2010.08.051

Links

Tools

Export citation

Search in Google Scholar

Experimental studies on removal of microcystin-LR by peat

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cyanotoxins have caused worldwide concerns for their eclectic occurrence and toxic effects, which led to an intensive search of cost-effective techniques for their removal from contaminated waters. A range of biomaterials was tested for their efficacy to adsorb a potent cyanotoxin, microcystin-LR (MCLR). Among these sorbents, peat showed the maximum efficacy to sequester MCLR. The BET (Brunauer-Emmett-Teller) surface area of peat was found to be 12.134 m(2)/g. The pH of the reaction media played a significant role in removal of MCLR; maximum adsorption occurred at pH 3. Kinetic studies showed that the adsorption of MCLR onto peat was a rapid process. The adsorption capacity (Q(max)) from the Langmuir model was found to be 255.7 μg/g at pH 3. Among various desorption media studied, strong alkali (2N NaOH) showed highest desorption (94%).