Published in

Elsevier, Preventive Veterinary Medicine, 3-4(112), p. 423-427, 2013

DOI: 10.1016/j.prevetmed.2013.07.019

Links

Tools

Export citation

Search in Google Scholar

Successful Visna/maedi control in a highly infected ovine dairy flock using serologic segregation and management strategies

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A control system for Visna/maedi virus (VMV) infection based on serologic segregation and management strategies was applied in an infected Spanish dairy Manchega breed sheep flock (n=670) that was affected by a severe respiratory process associated to VMV. The control started in 2004 and consisted on the serological study of animals, segregation in two different flocks (seropositive and seronegative), separate management of flocks, selection of young female lambs for replacement only from seronegative ewes offspring, immediate removal of seropositive animals detected in the seronegative flock and a management tending toward the reduction and final culling of the seropositive flock. The serological control was repeated yearly or twice a year, approximately. Initial VMV seroprevalence of the undivided flock was 66.4% (January 2004) that descended to 47.3%, 12.8%, 2.2% and 0.2% between July 2004 and May 2006. Residual seroprevalence fluctuated slightly thereafter with a peak of 2.2% in April 2008. After segregation, number of animals in the seronegative flock was 378 that descended to 323 in October 2005. Since then, this number has increased steadily reaching 650 sheep in December 2011. The seropositive flock was progressively reduced by culling until its total disappearance in June 2010. This work presents the detailed results obtained in the control strategy against VMV in a single dairy sheep flock by implementing a segregation system based on serologic testing. The system is highly successful, as it reduces to residual levels VMV infection in about two years without the need of culling a high number of animals, as required by other methods. Moreover, the original size flock was been recovered within 8 years and has led to a subjective improvement of animal health and welfare in the flock. The residual seroprevalence could be eliminated at this stage by applying more sensitive molecular or other serological techniques to reach eradication.