Published in

American Geophysical Union, Geophysical Research Letters, 17(35), 2008

DOI: 10.1029/2008gl034210

Links

Tools

Export citation

Search in Google Scholar

Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

1] The chemical properties of sea-spray aerosol particles produced by artificially generated bubbles using oceanic waters were investigated during a phytoplankton bloom in the North Atlantic. Spray particles exhibited a progressive increase in the organic matter (OM) content from 3 ± 0.4% up to 77 ± 5% with decreasing particle diameter from 8 to 0.125 mm. Submicron OM was almost entirely water insoluble (WIOM) and consisted of colloids and aggregates exuded by phytoplankton. Our observations indicate that size dependent transfer of sea water organic material to primary marine particles is mainly controlled by the solubility and surface tension properties of marine OM. The pattern of WIOM and sea-salt content in the different size intervals observed in bubble bursting experiments is similar to that measured in atmospheric marine aerosol samples collected during periods of high biological activity. The results point to a WIOM/sea-salt fingerprint associated with submicron primary marine aerosol production in biologically rich waters. Citation: Facchini, M. C., et al. (2008), Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates, Geophys. Res. Lett., 35, L17814, doi:10.1029/2008GL034210.