Elsevier, Soil Biology and Biochemistry, 5(38), p. 1092-1100
DOI: 10.1016/j.soilbio.2005.09.008
Full text: Download
Composts are increasingly used as environmentally safe biofertilizers in sustainable agriculture all over the world. Although it is well known that composts may contribute to soil vitality and sustainability, and in the enhancement of various soil microbiological processes, little is known about their direct or indirect effects on a microbial-community or population level. Ammonia oxidation by autotrophic ammonia-oxidizing bacteria (AOB) is a key process in agricultural and natural ecosystems and plays an important role in the global nitrogen cycle. Here, we studied the diversity and community composition of ammonia oxidizers in a long-term crop rotation field experiment (>10 years) where four major types of compost (from organic waste, cattle manure, green waste and sewage sludge) had been applied annually. The methods used ranged from PCR-DGGE (denaturing gradient gel electrophoresis) and cloning of 16S rDNA fragments to quantitative real-time PCR. Cluster analysis of DGGE profiles differentiated between the microbial communities of composts, compost-treated soils and mineral-fertilized soils. The community composition of the composts was not reflected in the community composition of the compost-treated soils. Sequencing of screened clones revealed a characteristic AOB community structure for the representative soil sample and the four composts. All AOB-like sequences grouped within the Nitrosospira cluster 3 and 4 and within the Nitrosomonas cluster 6 and 7. The average AOB abundance in compost-treated soils was two times higher than in mineral-fertilized soils (4.3×107 and 1.9×107, respectively). Our data suggest that composts do not leave direct microbial imprints in soils after long-term amendment, but an indirect effect on the AOB community was evident.