Published in

American Chemical Society, Bioconjugate Chemistry, 3(23), p. 382-391, 2012

DOI: 10.1021/bc200305t

Links

Tools

Export citation

Search in Google Scholar

G-Quadruplex-Forming Oligonucleotide Conjugated to Magnetic Nanoparticles: Synthesis, Characterization, and Enzymatic Stability Assays

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the present work, we report the conjugation of superparamagnetic nanoparticles to a fluorescently labeled oligodeoxyribonucleotide (ODN) able to fold into stable unimolecular guanine quadruple helix under proper ion conditions by means of its thrombin-binding aptamer (TBA) sequence. The novel modified ODN, which contained a fluorescent dU(Py) unit at 3'-end and a 12-amino-dodecyl spacer (C(12)-NH(2)) at 5' terminus, was characterized by ESI-MS and optical spectroscopy (UV, CD, fluorescence), and analyzed by RP-HPLC chromatography and electrophoresis. From CD and fluorescence experiments, we verified that dU(Py) and C(12)-NH(2) incorporation does not interfere with the conformational stability of the G-quadruplex. Subsequently, the conjugation of the pyrene-labeled ODN with the magnetite particles was performed, and the ODN-conjugated nanoparticles were studied through optical spectroscopy (UV, CD, fluorescence) and by enzymatic and chemical assays. We found that the nanoparticles enhanced the stability of the TBA ODN to enzymatic degradation. Finally, we evaluated the amount of the TBA-conjugated nanoparticles immobilized on a magnetic separator in view of the potential use of the nanosystem for the magnetic capture of thrombin from complex mixtures.