Published in

Elsevier, International Communications in Heat and Mass Transfer, (65), p. 47-51

DOI: 10.1016/j.icheatmasstransfer.2015.04.006

Links

Tools

Export citation

Search in Google Scholar

Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the present study, the thermal conductivity of CuO/EG–water nanofluid in different solid concentrations and temperatures has been experimentally investigated. Using a two-step method, the nanofluid has been produced in different solid concentrations ranging from 0.1% to 2% and temperatures up to 50 °C. The thermal conductivity of the nanofluid has been experimentally measured using the KD2 Pro instrument. Based on the experimental data, new correlations for predicting the thermal conductivity of CuO/EG–water at different temperatures have been proposed. The results show that with the increase of the solid concentration, the thermal conductivity of the nanofluid increases. Furthermore, the thermal conductivity of the nanofluid increases while the temperature increases. This increase is by far more noticeable in higher solid concentrations compared with lower solid volume fraction. This means that it is the presence of nanoparticles in the base fluid that causes the increase of the effect of temperature on the thermal conductivity.