Springer Verlag, Journal of Neural Transmission, 8(111)
DOI: 10.1007/s00702-004-0124-0
Full text: Download
Quantifications of Al, Ca, Cu, Fe, Mg, Mn, Si and Zn were performed in urine, serum, blood and cerebrospinal fluid (CSF) of 26 patients affected by Parkinson's disease (PD) and 13 age-matched controls to ascertain the potential role of biological fluids as markers for this pathology. Analyses were performed by Inductively Coupled Plasma Atomic Emission Spectrometry and Sector Field Inductively Coupled Plasma Mass Spectrometry. The serum oxidant status (SOS) and anti-oxidant capacity (SAC) were also determined. Results showed a decreasing trend for Al in all the fluids of PD patients, with the strongest evidence in serum. Calcium levels in urine, serum and blood of PD patients were significantly higher than in controls. Copper and Mg concentrations were significantly lower in serum of PD patients. Levels of Fe in urine, blood and CSF of patients and controls were dissimilar, with an increase in the first two matrices and a decrease in CSF. No significant difference was found in levels of Mn between patients and controls. Urinary excretion of Si was significantly higher in PD subjects than in controls. No clear difference between Zn levels in the two groups was found for serum, urine or CSF, but an increase in Zn levels in the blood of PD patients was observed. The SOS level in PD was significantly higher while the corresponding SAC was found to be lower in patients than in controls, in line with the hypothesis that oxidative damage is a key factor in the pathogenesis of PD. The results on the whole indicate the involvement of Fe and Zn (increased concentration in blood) as well as of Cu (decreased serum level) in PD. The augmented levels of Ca and Mg in the fluids and of Si in urine of patients may suggest an involuntary intake of these elements during therapy.