Published in

Portland Press, Biochemical Society Transactions, 3(41), p. 803-807, 2013

DOI: 10.1042/bst20120358

Links

Tools

Export citation

Search in Google Scholar

Do age-related changes in DNA methylation play a role in the development of age-related diseases?

Journal article published in 2013 by Sanne D. van Otterdijk, John C. Mathers ORCID, Gordon Strathdee ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

DNA methylation is an important epigenetic mechanism in mammalian cells. It occurs almost exclusively at CpG sites and has a key role in a number of biological processes. It plays an important part in regulating chromatin structure and has been best studied for its role in controlling gene expression. In particular, hypermethylation of gene promoters which have high levels of CpG sites, known as CpG islands, leads to gene inactivation. In healthy cells, however, it appears that only a small number of genes are controlled through promoter hypermethylation, such as genes on the inactivated X-chromosome or at imprinted loci, and most promoter-associated CpG islands remain methylation-free regardless of gene expression status. However, a large body of evidence has now shown that this protection from methylation not only breaks down in a number of pathological conditions (e.g. cancer), but also already occurs during the normal process of aging. The present review focuses on the methylation changes that occur during healthy aging and during disease development, and the potential links between them. We focus especially on the extent to which the acquisition of aberrant methylation changes during aging could underlie the development of a number of important age-related pathological conditions.