Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Health Policy and Planning, 5(31), p. 600-611, 2015

DOI: 10.1093/heapol/czv107

Links

Tools

Export citation

Search in Google Scholar

Do academic knowledge brokers exist? Using social network analysis to explore academic research-to-policy networks from six schools of public health in Kenya

Journal article published in 2015 by Nasreen S. Jessani ORCID, Marc G. Boulay, Sara C. Bennett
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The potential for academic research institutions to facilitate knowledge exchange and influence evidence-informed decision-making has been gaining ground. Schools of public health (SPHs) may play a key knowledge brokering role—serving as agencies of and for development. Understanding academic-policymaker networks can facilitate the enhancement of links between policymakers and academic faculty at SPHs, as well as assist in identifying academic knowledge brokers (KBs). Using a census approach, we administered a sociometric survey to academic faculty across six SPHs in Kenya to construct academic-policymaker networks. We identified academic KBs using social network analysis (SNA) in a two-step approach: First, we ranked individuals based on (1) number of policymakers in their network; (2) number of academic peers who report seeking them out for advice on knowledge translation and (3) their network position as ‘inter-group connectors’. Second, we triangulated the three scores and re-ranked individuals. Academic faculty scoring within the top decile across all three measures were classified as KBs. Results indicate that each SPH commands a variety of unique as well as overlapping relationships with national ministries in Kenya. Of 124 full-time faculty, we identified 7 KBs in 4 of the 6 SPHs. Those scoring high on the first measure were not necessarily the same individuals scoring high on the second. KBs were also situated in a wide range along the ‘connector/betweenness’ measure. We propose that a composite score rather than traditional ‘betweenness centrality’, provides an alternative means of identifying KBs within these networks. In conclusion, SNA is a valuable tool for identifying academic-policymaker networks in Kenya. More efforts to conduct similar network studies would permit SPH leadership to identify existing linkages between faculty and policymakers, shared linkages with other SPHs and gaps so as to contribute to evidence-informed health policies.