Springer, European Biophysics Journal with Biophysics Letters, 2(38), p. 145-158, 2008
DOI: 10.1007/s00249-008-0368-y
Full text: Download
This review highlights recent advances in structural studies on low density lipoprotein (LDL) with particular emphasis on the apolipoprotein moiety of LDL, apolipoprotein B100 (apoB100). Various molecular aspects of LDL are outlined and obstacles to structure determination are addressed. In this context, the prevailing conceptions of the molecular assembly of LDL and how the synergy of complementary biochemical, biophysical and molecular simulation approaches has lead to the current structural model of LDL are discussed. Evidence is presented that structural heterogeneity and the intrinsic dynamics of LDL are key determinants of the functionality of LDL in both health and disease. Some key research directions, remaining open questions and rapidly emerging new concepts for medical applications of LDL, are furthermore outlined. The article concludes by providing an outlook concerning promising future strategies for the clarification of the molecular details of LDL, in particular of apoB100, combining recent advances in molecular modeling with developments of novel experimental techniques. Although new insights into the molecular organization of LDL are forthcoming, many open questions remain unanswered. The major challenge of the next decade will certainly be the elucidation of the molecular structural and dynamic features of apoB100.