Published in

Oxford University Press, Endocrinology, 3(149), p. 1075-1090, 2007

DOI: 10.1210/en.2007-0740

Links

Tools

Export citation

Search in Google Scholar

Substrate-Bound Insulin-Like Growth Factor (IGF)-I-IGF Binding Protein-Vitronectin-Stimulated Breast Cell Migration Is Enhanced by Coactivation of the Phosphatidylinositide 3-Kinase/AKT Pathway by αv-Integrins and the IGF-I Receptor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

IGF-I can bind to the extracellular matrix protein vitronectin (VN) through the involvement of IGF-binding proteins-2, -3, -4, and -5. Because IGF-I and VN have established roles in tumor cell dissemination, we were keen to investigate the functional consequences of the interaction of IGF-I, IGF binding proteins (IGFBPs), and VN in tumor cell biology. Hence, functional responses of MCF-7 breast carcinoma cells and normal nontumorgenic MCF-10A mammary epithelial cells were investigated to allow side-by-side comparisons of these complexes in both cancerous and normal breast cells. We demonstrate that substrate-bound IGF-I-IGFBP-VN complexes stimulate synergistic increases in cellular migration in both cell types. Studies using IGF-I analogs determined this stimulation to be dependent on both heterotrimeric IGF-I-IGFBP-VN complex formation and the involvement of the IGF-I receptor (IGF-IR). Furthermore, the enhanced cellular migration was abolished on incubation of MCF-7 and MCF-10A cells with function blocking antibodies directed at VN-binding integrins and the IGF-IR. Analysis of the signal transduction pathways underlying the enhanced cell migration revealed that the complexes stimulate a transient activation of the ERK/MAPK signaling pathway while simultaneously producing a sustained activation of the phosphatidylinositide 3-kinase/AKT pathway. Experiments using pharmacological inhibitors of these pathways determined a requirement for phosphatidylinositide 3-kinase/AKT activation in the observed response. Overexpression of wild type and activated AKT further increases substrate-bound IGF-I-IGFBP-VN-stimulated migration. This study provides the first mechanistic insights into the action of IGF-I-IGFBP-VN complexes and adds further evidence to support the involvement of VN-binding integrins and their cooperativity with the IGF-IR in the promotion of tumor cell migration.