Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Ultramicroscopy, 2(96), p. 167-174

DOI: 10.1016/s0304-3991(03)00004-4

Links

Tools

Export citation

Search in Google Scholar

DNA height in scanning force microscopy

Journal article published in 2003 by F. Moreno Herrero, J. Colchero ORCID, A. M. Baró
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The measured height of DNA molecules adsorbed on a mica substrate by scanning probe microscopy is always less than the theoretical diameter. In this paper we show that, when imaged in ambient conditions, the molecules are usually immersed in the salt layer used to adsorb them to the substrate. This layer distorts the measurement of DNA height and is the main source of error but not the only one. We have performed different experiments to study this problem using two scanning force techniques: non-contact tapping mode in air and jumping mode in aqueous solution, where the dehydration phenomena is minimized. Height measurements of DNA in air using tapping mode reveal a height of 0.7+/-0.2nm. This value increases up to 1.5+/-0.2nm when the salt layer, in which the molecules are embedded, is removed. Jumping experiments in water give a value of 1.4+/-0.3nm when the maximum applied force is 300pN and 1.8+/-0.2nm at very low forces, which confirms the removal of the salt layer. Still, in all our experiments, the measured height of the DNA is less than the theoretical value. Our results show that although the salt layer present is important, some sample deformation due to either the loading force of the tip or the interaction with the substrate is also present.