Published in

Nature Publishing Group, Nature Clinical Practice Neurology, 9(4), p. 490-503, 2008

DOI: 10.1038/ncpneuro0883

Links

Tools

Export citation

Search in Google Scholar

Roles of the cation–chloride cotransporters in neurological disease

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the nervous system, the intracellular chloride concentration ([Cl(-)](i)) determines the strength and polarity of gamma-aminobutyric acid (GABA)-mediated neurotransmission. [Cl(-)](i) is determined, in part, by the activities of the SLC12 cation-chloride cotransporters (CCCs). These transporters include the Na-K-2Cl cotransporter NKCC1, which mediates chloride influx, and various K-Cl cotransporters--such as KCC2 and KCC3-that extrude chloride. A precise balance between NKCC1 and KCC2 activity is necessary for inhibitory GABAergic signaling in the adult CNS, and for excitatory GABAergic signaling in the developing CNS and the adult PNS. Altered chloride homeostasis, resulting from mutation or dysfunction of NKCC1 and/or KCC2, causes neuronal hypoexcitability or hyperexcitability; such derangements have been implicated in the pathogenesis of seizures and neuropathic pain. [Cl(-)](i) is also regulated to maintain normal cell volume. Dysfunction of NKCC1 or of swelling-activated K-Cl cotransporters has been implicated in the damaging secondary effects of cerebral edema after ischemic and traumatic brain injury, as well as in swelling-related neurodegeneration. CCCs represent attractive therapeutic targets in neurological disorders the pathogenesis of which involves deranged cellular chloride homoestasis.