Published in

Elsevier, Comparative Biochemistry and Physiology - Part C: Toxicology and Pharmacology, 3(151), p. 271-277

DOI: 10.1016/j.cbpc.2009.11.006

Links

Tools

Export citation

Search in Google Scholar

DNA damage in barn swallows (Hirundo rustica) from the Chernobyl region detected by use of the comet assay

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigated levels of DNA damage in blood cells of barn swallows (Hirundo rustica) inhabiting the Chernobyl region to evaluate whether chronic exposure to low-level radioactive contamination continues to induce genetic damage in free-living populations of animals. Blood samples were obtained from barn swallows collected at sites with different background levels of radiation, including a relatively uncontaminated area. The extent of DNA damage was evaluated using the alkaline (pH=12.1) comet assay, a robust and sensitive electrophoresis-based technique widely employed in research ranging from biomonitoring to clinical studies. We found that levels of DNA damage, as indexed by the extent of DNA migration, were increased in barn swallows living in areas surrounding Chernobyl when compared to swallows sampled at low-level sites. The results we obtained are consistent with previous findings on this same species, which showed that swallows breeding in areas heavily contaminated with radionuclides have increased mutation rates, higher oxidative stress and incidence of morphological aberrations and tumors. Overall, these results indicate that chronic exposure to radioactive contaminants, even 20years after the accident at the Chernobyl nuclear power plant, continues to induce DNA damage in cells of free-living animals.