Published in

The Company of Biologists, Journal of Cell Science, 2014

DOI: 10.1242/jcs.150524

Links

Tools

Export citation

Search in Google Scholar

Molecular probes to visualize the location, organization and dynamics of lipids

Journal article published in 2014 by Masashi Maekawa, Gregory D. Fairn ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Cellular lipids play crucial roles in the cell, including in energy storage, the formation of cellular membranes, and in signaling and vesicular trafficking. To understand the functions and characteristics of lipids within cells, various methods to image lipids have been established. In this Commentary, we discuss the four main types of molecular probes that have significantly contributed to our understanding of the cell biology of lipids. In particular, genetically encoded biosensors and antibodies will be discussed, and how they have been used extensively with traditional light and electron microscopy to determine the subcellular localization of lipids and their spatial and temporal regulation. We highlight some of the recent studies that have investigated the distribution of lipids and their ability to cluster using super-resolution and electron microscopy. We also examine methods for analyzing the movement and dynamics of lipids, including single-particle tracking (SPT), fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS). Although the combination of these lipid probes and the various microscopic techniques is very powerful, we also point out several potential caveats and limitations. Finally, we discuss the need for new probes for a variety of phospholipids and cholesterol.