Published in

Karger Publishers, Journal of Vascular Research, 6(39), p. 465-476, 2002

DOI: 10.1159/000067202

Links

Tools

Export citation

Search in Google Scholar

Roles of Microtubule Dynamics and Small GTPase Rac in Endothelial Cell Migration and Lamellipodium Formation under Flow

Journal article published in 2002 by Ying-Li Hu, Song Li, Hui Miao, Tsui-Chun Tsou ORCID, Miguel Angel del Pozo ORCID, Shu Chien
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Endothelial cell (EC) migration is required for vascular development and wound healing. We investigated the roles of microtubule (MT) dynamics and the small GTPase Rac in the fluid shear stress-induced protrusion of lamellipodia and enhancement of migration of bovine aortic ECs (BAECs). Shear stress increased lamellipodial protrusion and cell migration. Treating BAECs with paclitaxel (Taxol), an MT-stabilizing agent, inhibited lamellipodial protrusion and reduced migration speed in both the static and sheared groups. After Taxol washout, both lamellipodial protrusion and cell migration increased in the flow direction. Taxol treatment also decreased the shear-induced Rac activation. Transfection of BAECs with a dominant negative mutant of Rac1 inhibited lamellipodial protrusion and cell migration under static and shear conditions. Transfection with an activated mutant of Rac1 induced lamellipodia in all directions and attenuated the shear-induced migration, suggesting that an appropriate level of Rac activity and a polarized lamellipodial protrusion are important for cell migration under static and shear conditions. Our findings suggest that MT dynamics and optimum Rac activation are required for the polarized protrusion of lamellipodia that drives the directional EC migration under flow.