Published in

Springer Verlag, Lecture Notes in Computer Science, p. 1253-1258

DOI: 10.1007/bfb0020323

Links

Tools

Export citation

Search in Google Scholar

Handwritten Digit Recognition with Binary Optical Perceptron

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Binary weights are favored in electronic and optical hardware implementations of neural networks as they lead to improved system speeds. Optical neural networks based on fast ferroelectric liquid crystal binary level devices can benefit from the many orders of magnitudes improved liquid crystal response times. An optimized learning algorithm for all-positive perceptrons is simulated on a limited data set of hand-written digits and the resultant network implemented optically. First, gray-scale and then binary inputs and weights are used in recall mode. On comparing the results for the example data set, the binarized inputs and weights network shows almost no loss in performance.