Published in

Wiley, Evolution & Development, 1(7), p. 58-68, 2005

DOI: 10.1111/j.1525-142x.2005.05007.x

Links

Tools

Export citation

Search in Google Scholar

Role of the male BmDSX protein in the sexual differentiation of Bombyx mori

Journal article published in 2005 by Mg Suzuki, Shunsuke Funaguma, Toshio Kanda, Toshiki Tamura, Toru Shimada ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The sex determination pathway is different between Drosophila melanogaster and Bombyx mori in the initial signal. Here we show evidence that the sex determination pathway in B. mori is similar to that of D. melanogaster at the level of the terminal regulator, doublesex (dsx), which is essential for the proper differentiation of the sexually dimorphic somatic features of D. melanogaster. In B. mori, a homolog of dsx (Bmdsx) is expressed in various tissues, and its primary transcript is alternatively spliced in males and females to yield sex-specific mRNAs that encode male-specific (BmDSXM) and female-specific (BmDSXF) polypeptides. In the studies reported here, transgenic silkworms carrying a construct with a Bmdsx male cDNA placed under the control of either an hsp70 promoter or a Bombyx actin3 promoter were generated by piggyBac-mediated germline transformation. Ectopic expression of the male cDNA in females resulted in abnormal differentiation of certain female-specific genital organs and caused partial male differentiation in female genitalia. Transgenic analysis also revealed that the expression of BmDSXM in females caused repression of the female-specifically expressed gene, the vitellogenin gene, and also resulted in activation of the pheromone-binding protein gene that is dominantly expressed in males. These results provide evidence that the role of BmDSXM includes the activation of some aspects of male differentiation as well as the repression of female differentiation. Taken together with our previous data on the function of BmDSXF, we can conclude that Bmdsx is a double-switch gene at the final step in the sex-determination cascade of B. mori.