Elsevier, Remote Sensing of Environment, 9(112), p. 3469-3481, 2008
DOI: 10.1016/j.rse.2008.03.018
Full text: Download
Optical imagery can reveal spectral properties of forest canopy, which rarely allows for finding accurate correspondence of canopy features with soils and hydrology. In Amazonia non-floodable swampy forests can not be easily distinguished from non-floodable terra-firme forests using just bidimensional spectral data. Accurate topographic data are required for the understanding of land surface processes at finer scales. Topographic detail has now become available with the Shuttle Radar Topographic Mission (SRTM) data. This new digital elevation model (DEM) shows the feature-rich relief of lowland rain forests, adding to the ability to map rain forest environments through many quantitative terrain descriptors. In this paper we report on the development of a new quantitative topographic algorithm, called HAND (Height Above the Nearest Drainage), based on SRTM-DEM data. We tested the HAND descriptor for a groundwater, topographic and vegetation dataset from central Amazonia. The application of the HAND descriptor in terrain classification revealed strong correlation between soil water conditions, like classes of water table depth, and topography. This correlation obeys the physical principle of soil draining potential, or relative vertical distance to drainage, which can be detected remotely through the topography of the vegetation canopy found in the SRTM-DEM data.