Published in

American Chemical Society, Journal of Physical Chemistry C, 34(117), p. 17850-17858, 2013

DOI: 10.1021/jp4061895

Links

Tools

Export citation

Search in Google Scholar

Role of the Exposed Polar Facets in the Performance of Thermally and UV Activated ZnO Nanostructured Gas Sensors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ZnO nanostructures with different morphologies (nanowires, nanodisks, and nanostars) were synthesized hydrothermally. Gas sensing properties of the as-grown nanostructures were investigated under thermal and UV activation. The performance of the ZnO nanodisk gas sensor was found to be superior to that of other nanostructures (S g ∼ 3700% to 300 ppm ethanol and response time and recovery time of 8 and 13 s). The enhancement in sensitivity is attributed to the surface polarities of the different structures on the nanoscale. Furthermore, the selectivity of the gas sensors can be achieved by controlling the UV intensity used to activate these sensors. The highest sensitivity value for ethanol, isopropanol, acetone, and toluene are recorded at the optimal UV intensity of 1.6, 2.4, 3.2, and 4 mW/cm(2), respectively. Finally, the UV activation mechanism for metal oxide gas sensors is compared with the thermal activation process. The UV activation of analytes based on solution processed ZnO structures pave the way for better quality gas sensors.