Published in

Elsevier, Surface and Coatings Technology, (234), p. 42-47, 2013

DOI: 10.1016/j.surfcoat.2013.05.045

Links

Tools

Export citation

Search in Google Scholar

Role of substrate outgassing on the formation dynamics of either hydrophilic or hydrophobic wood surfaces in atmospheric-pressure, organosilicon plasmas

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This work examines the influence of substrate outgassing on the deposition dynamics of either hydrophilic or hydrophobic coatings on wood surfaces in organosilicon, dielectric barrier discharges. Sugar maple and black spruce wood samples were placed on the bottom electrode and the discharge was sustained in N-2-HMDSO (hexamethyldisiloxane) gas mixtures by applying a 24 kV peak-to-peak voltage at 2 kHz. Current-voltage characteristics revealed a transition from a filamentary to a homogeneous discharge with increasing plasma treatment time, t. Based on optical emission spectroscopy, the filamentary behavior was ascribed to the release of air and humidity from the wood substrate following discharge exposure which produced significant quenching of N-2 metastables. This effect vanished at longer treatment times due to the nearly complete "pumping" of products from the wood substrate and the progressive deposition of a "barrier" layer. Analysis of the surface wettability through static, water contact angles (WCAs) and of the surface composition through Fourier-Transform-Infra-Red-Spectroscopy and X-ray-Photoelectron-Spectroscopy indicated that for t < 10 min, the wood surface was more hydrophilic due to the formation of a SiOx layer, a typical behavior for HMDSO deposition in presence of oxygen. On the other hand, for t > 10 min, the static WCA increased up to similar to 140 degrees due to the deposition of hydrophobic Si(CH3)(3)-O-Si(CH3)(2), Si(CH3)(3), and Si(CH3)(2) functional groups.