Links

Tools

Export citation

Search in Google Scholar

Hager, K. M., Striepen, B., Tilney, L. G. & Roos, D. S. The nuclear envelope serves as an intermediary between the ER and Golgi complex in the intracellular parasite Toxoplasma gondii. J. Cell Sci. 112, 2631-2638

Journal article published in 1999 by K. M. Hager, B. Striepen, L. G. Tilney, D. S. Roos
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Morphological examination of the highly polarized protozoan parasite Toxoplasma gondii suggests that secretory traffic in this organism progresses from the endoplasmic reticulum to the Golgi apparatus using the nuclear envelope as an intermediate compartment. While the endoplasmic reticulum is predominantly located near the basal end of the parasite, the Golgi is invariably adjacent to the apical end of the nucleus, and the space between the Golgi and nuclear envelope is filled with numerous coatomer-coated vesicles. Staining with antiserum raised against recombinant T. gondii beta-COP confirms its association with the apical juxtanuclear region. Perturbation of protein secretion using brefeldin A, microtubule inhibitors or dithiothreitol disrupts the Golgi, causing swelling of the nuclear envelope, particularly at its basal end. Prolonged drug treatment leads to gross distention of the endoplasmic reticulum, filling the basal end of the parasite. Cloning and sequencing of the T. gondii homolog of the chaperonin protein BiP identifies the carboxy-terminal amino acid sequence HDEL as this organism's endoplasmic reticulum-retention signal. Appending the HDEL motif to a recombinant secretory protein (a chimera between the parasite's major surface protein fusion, P30, and the Green Fluorescent Protein) causes this secretory reporter to be retained intracellularly. P30-GFP-HDEL fluorescence was most intense within the nuclear envelope, particularly at the apical end. These data support a model of secretion in which protein traffic from the endoplasmic reticulum to Golgi occurs via the apical end of the nuclear envelope.