Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical review B, 12(92), 2015

DOI: 10.1103/physrevb.92.125434

Links

Tools

Export citation

Search in Google Scholar

Role of metastable charge states in a quantum-dot spin-qubit readout

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Readout of a spin qubit in a lateral gate-defined quantum-dot device typically involves a charge detector and a spin-to-charge conversion technique employing spin blockade. We investigate alternative mechanisms for spin-to-charge conversion involving metastable excited charge states made possible by an asymmetry in the tunneling rates to the leads. This technique is used to observe Landau-Zener-Stückelberg oscillations of the S-T + qubit within the (1,0) ground state region of the charge stability diagram. The oscillations are π phase shifted relative to those detected using the standard technique and display a nonsinusoidal waveform due to the increased relaxation time from the metastable state.